Identification of an allosteric binding site for Zn2+ on the beta2 adrenergic receptor.

نویسندگان

  • Gayathri Swaminath
  • Tae Weon Lee
  • Brian Kobilka
چکیده

The activity of G protein-coupled receptors (GPCRs) can be modulated by a diverse spectrum of drugs ranging from full agonists to partial agonists, antagonists, and inverse agonists. The vast majority of these ligands compete with native ligands for binding to orthosteric binding sites. Allosteric ligands have also been described for a number of GPCRs. However, little is known about the mechanism by which these ligands modulate the affinity of receptors for orthosteric ligands. We have previously reported that Zn(II) acts as a positive allosteric modulator of the beta(2)-adrenergic receptor (beta(2)AR). To identify the Zn(2+) binding site responsible for the enhancement of agonist affinity in the beta(2)AR, we mutated histidines located in hydrophilic sequences bridging the seven transmembrane domains. Mutation of His-269 abolished the effect of Zn(2+) on agonist affinity. Mutations of other histidines had no effect on agonist affinity. Further mutagenesis of residues adjacent to His-269 demonstrated that Cys-265 and Glu-225 are also required to achieve the full allosteric effect of Zn(2+) on agonist binding. Our results suggest that bridging of the cytoplasmic extensions of TM5 and TM6 by Zn(2+) facilitates agonist binding. These results are in agreement with recent biophysical studies demonstrating that agonist binding leads to movement of TM6 relative to TM5.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of three beta adrenergic receptor agonists on growth performance, blood biochemical parameters, fatty acids composition and carnitine palmitoyltransferase I gene expression of rainbow trout, Oncorhynchus mykiss

Different beta 1 and 2 adrenergic receptors agonists might have various biological and physiological effects on fish species. An experiment was designed to study the effects of feeding ractopamine, terbutaline and metaproterenol; as beta1, beta2 and less selective beta2 adrenergic receptor agonists, respectively; on body weight gain, feed conversion rate, concentration of biochemical parameters...

متن کامل

Effects of three beta adrenergic receptor agonists on growth performance, blood biochemical parameters, fatty acids composition and carnitine palmitoyltransferase I gene expression of rainbow trout Oncorhynchus mykiss

Different beta 1 and 2 adrenergic receptor agonists may be various biological and physiological effects on fish species. An experiment was designed to study the effects of feeding ractopamine, terbutaline and metaproterenol; as beta1, beta2 and less selective beta 2 adrenergic receptor agonists, respectively; on body weight gain, feed conversion ratio, concentration of biochemical parameters in...

متن کامل

Investigation of adrenoceptor genes (β2 & β3) in women with polycystic ovary syndrome

Background: Genetic polymorphism is responsible for variations and individual differences. Polymorphism is a major factor of complex diseases with unknown etiology and cancer. Inconsistency in the symptoms of polycystic ovary syndrome (monthly disorder, hirsutism, obesity, diabetes, infertility) is one of the major pathological complications of this syndrome. The present study was conducted to ...

متن کامل

Zinc and ifenprodil allosterically inhibit two separate polyamine-sensitive sites at N-methyl-D-aspartate receptor complex.

In this study, we investigated the hypothesis that inhibition of the N-methyl-D-aspartate (NMDA) receptor complex by zinc involves a polyamine-sensitive regulatory site. We found that the specific binding of the open channel ligand [3H]MK-801 to rat hippocampal membranes 1) was inhibited by low concentrations of Zn2+ (IC50 = 5.5 microM) by 65%. 2) This high-affinity component of inhibition was ...

متن کامل

Mapping the Druggable Allosteric Space of G-Protein Coupled Receptors: a Fragment-Based Molecular Dynamics Approach

To address the problem of specificity in G-protein coupled receptor (GPCR) drug discovery, there has been tremendous recent interest in allosteric drugs that bind at sites topographically distinct from the orthosteric site. Unfortunately, structure-based drug design of allosteric GPCR ligands has been frustrated by the paucity of structural data for allosteric binding sites, making a strong cas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 1  شماره 

صفحات  -

تاریخ انتشار 2003